Appendix

Topology of Cell Complexes

Here we collect a number of basic topological facts about CW complexes for con-
venient reference. A few related facts about manifolds are also proved.

Let us first recall from Chapter O that a CW complex is a space X constructed in
the following way:

(1) Start with a discrete set XO, the 0-cells of X.

(2) Inductively, form the n-skeleton X" from X! by attaching n-cells e” via maps
@u:S" ' —X""! This means that X" is the quotient space of X" "', D" under
the identifications x ~ @,(x) for x € dD%. The cell e} is the homeomorphic
image of D} — D2 under the quotient map.

(3) X = U, X" with the weak topology: A set A C X is open (or closed) iff An X" is
open (or closed) in X" for each n.

Note that condition (3) is superfluous when X is finite-dimensional, so that X = X"
for some n. For if A is openin X = X", the definition of the quotient topology on
X" implies that AN X! is openin X" !, and then by the same reasoning A N X" 2
is open in X" 2, and similarly for all the skeleta X",

Each cell e} has its characteristic map &, which is by definition the composi-
tion D «— X" ![[,D"— X" — X. This is continuous since it is a composition of
continuous maps, the inclusion X" — X being continuous by (3). The restriction of
@, to the interior of D} is a homeomorphism onto e};.

An alternative way to describe the topology on X is to say that a set A C X is
open (or closed) iff <I>;1 (A) is open (or closed) in D} for each characteristic map ®,.
In one direction this follows from continuity of the ®,’s, and in the other direction,
suppose cIJ;l(A) is open in D} for each ®,, and suppose by induction on n that
AnX"!isopenin X" 1. Then since ®,(A) is openin D" for all x, AnX" is open
in X" by the definition of the quotient topology on X". Hence by (3), A is open in X.

A consequence of this characterization of the topology on X is that X is a quotient
space of [, ,Dy.
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A subcomplex of a CW complex X is a subspace A ¢ X which is a union of cells
of X, such that the closure of each cell in A is contained in A. Thus for each cell
in A, the image of its attaching map is contained in A, so A is itself a CW complex.
Its CW complex topology is the same as the topology induced from X, as one sees
by noting inductively that the two topologies agree on A" = A n X". It is easy to
see by induction over skeleta that a subcomplex is a closed subspace. Conversely, a
subcomplex could be defined as a closed subspace which is a union of cells.

A finite CW complex, that is, one with only finitely many cells, is compact since
attaching a single cell preserves compactness. A sort of converse to this is:

Proposition A.1. A compact subspace of a CW complex is contained in a finite sub-
complex.

Proof: First we show that a compact set C in a CW complex X can meet only finitely
many cells of X. Suppose on the contrary that there is an infinite sequence of points
x; € C all lying in distinct cells. Then the set S = {x,, x,,--+} is closed in X. Namely,
assuming S n X" ! is closed in X"~! by induction on #, then for each cell e of X,
@1 (S) is closed in 8D, and ®;'(S) consists of at most one more point in D", so
@' (S) is closed in D. Therefore SN X" is closed in X™ for each n, hence S is closed
in X. The same argument shows that any subset of S is closed, so S has the discrete
topology. But it is compact, being a closed subset of the compact set C. Therefore S
must be finite, a contradiction.

Since C is contained in a finite union of cells, it suffices to show that a finite
union of cells is contained in a finite subcomplex of X. A finite union of finite sub-
complexes is again a finite subcomplex, so this reduces to showing that a single cell ef;
is contained in a finite subcomplex. The image of the attaching map @ for e}; is com-
pact, hence by induction on dimension this image is contained in a finite subcomplex
A c X" 1. So el is contained in the finite subcomplex A U e!. |

Now we can explain the mysterious letters ‘CW,” which refer to the following two
properties satisfied by CW complexes:

(1) Closure-finiteness: The closure of each cell meets only finitely many other cells.
This follows from the preceding proposition since the closure of a cell is compact,
being the image of a characteristic map.

(2) Weak topology: A set is closed iff it meets the closure of each cell in a closed set.
For if a set meets the closure of each cell in a closed set, it pulls back to a closed
set under each characteristic map, hence is closed by an earlier remark.

In J.H.C. Whitehead’s original definition of CW complexes these two properties played
a more central role. The following proposition contains essentially this definition.
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Proposition A.2. Given a Hausdorff space X and a family of maps ®,:D};— X,
then these maps are the characteristic maps of a CW complex structure on X iff:
(i) Each &, is injective on intD}y, hence ®, restricts to a homeomorphism from
int D} onto a cell e}, C X. All these cells are disjoint, and their union is X .
(i) For each cell ey, ®,(0D}) is contained in the union of a finite number of cells of
dimension less than n.
(iii) A subset of X is closed iff it meets the closure of each cell of X in a closed set.

The ‘hence’ in (i) follows from the fact that ®, maps the compact set Dy to a
Hausdorff space, so since &, takes compact sets to compact sets, it takes closed
sets to closed sets, which means that @,':e” — int D" is continuous. By the same
compactness argument, condition (iii) can be restated as saying that a set C C X is
closed iff ®3'(C) is closed in D! for all «. In particular, (iii) is automatic if there
are only finitely many cells since the projection [[, Dy — X is a map from a compact
space onto a Hausdorff space, hence is a quotient map.

For an example where all the conditions except the finiteness hypothesis in (ii)
are satisfied, take X to be D? with its interior as a 2-cell and each point of dD? as
a 0-cell. The identity map of D? serves as the @, for the 2-cell. Condition (iii) is
satisfied since it is a nontrivial condition only for the 2-cell.

Proof: We have already taken care of the ‘only if’ implication. For the converse,
suppose inductively that X™ !, the union of all cells of dimension less than #, is a
CW complex with the appropriate ®,’s as characteristic maps. The induction can start
with X™' = @. Let f:X" '[],D!— X" be given by the inclusion on X""! and the
maps ¢, for all the n-cells of X. This is a continuous surjection, and if we can show
it is a quotient map, then X" will be obtained from X" ! by attaching the n-cells e®.
Thus if C ¢ X" is such that £ (C) is closed, we need to show that C n ey is closed
for all cells e}? of X, the bar denoting closure.

There are three cases. If m < n then f_l(C) closed implies C N X! closed,
hence C neg" is closed since e* ¢ X"~'. If m = n then ej" is one of the cells ef;, so
f71(C) closed implies f71(C) N DY is closed, hence compact, hence its image C nej
under f is compact and therefore closed. Finally there is the case m > n. Then
C c X" implies C neg' c ®5(3Dg"). The latter space is contained in a finite union of

Ef’s with £ < m. By induction on m, each C n Ef

is closed. Hence the intersection
of C with the union of the finite collection of Ef ’s is closed. Intersecting this closed
set with 4", we conclude that C neg" is closed.

It remains only to check that X has the weak topology with respect to the X™’s,
that is, a set in X is closed iff it intersects each X" in a closed set. The preceding
argument with C = X" shows that X" is closed, so a closed set intersects each X"
in a closed set. Conversely, if a set C intersects X" in a closed set, then C intersects

each 2} in a closed set, so C is closed in X by (iii). m]
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Next we describe a convenient way of constructing open neighborhoods N, (A) of
subsets A of aCW complex X, where ¢ is a function assigning anumber &, > 0 to each
cell e}y of X. The construction is inductive over the skeleta X", so suppose we have
already constructed NJ'(A), a neighborhood of A n X™ in X", starting the process
with N2(A) = A n X°. Then we define N"*!(A) by specifying its preimage under
the characteristic map ®,:D""'— X of each cell "', namely, ®,'(N/*!(A)) is the
union of two parts: an open &,-neighborhood of ®,'(A) —dD""! in D" — aD" !,
and a product (1 —&,,1] ><CI>&1 (N7 (A)) with respect to ‘spherical’ coordinates (7, 0)
in D", where v € [0, 1] is the radial coordinate and 0 lies in 9D""! = §", Then we
define N,(A) = |J,, N'(A). This is an open set in X since it pulls back to an open set
under each characteristic map.

|| Proposition A.3. CW complexes are normal, and in particular, Hausdorff.

Proof: Points are closed in a CW complex X since they pull back to closed sets under
all characteristic maps ®,. For disjoint closed sets A and B in X, we show that N, (A)
and N, (B) are disjoint for small enough ¢,’s. In the inductive process for building
these open sets, assume N;'(A) and N}'(B) have been chosen to be disjoint. For a
characteristic map ®,:D""! — X, observe that &' (NI*(A)) and &' (B) are a positive
distance apart, since otherwise by compactness we would have a sequence in fb&l (B)
converging to a point of ®!(B) in aD™! of distance zero from @, (N (A)), but
this is impossible since ®! (N (B)) is a neighborhood of ®,!(B) ndD""! in aD""!
disjoint from &' (N (A)). Similarly, ® ' (N*(B)) and &, (A) are a positive distance
apart. Also, <I>;1(A) and <I>;1(B) are a positive distance apart. So a small enough ¢,
will make &' (N"*1(A)) disjoint from &' (N"*!(B)) in D"*!. O

Proposition A.4. Each point in a CW complex has arbitrarily small contractible open
neighborhoods, so CW complexes are locally contractible.

Proof: Given a point x in a CW complex X and a neighborhood U of x in X, we
can choose the ¢,’s small enough so that N,(x) C U by requiring that the closure of
N[ (x) be contained in U for each 7. It remains to see that N,(x) is contractible. If
x € X™—-X""! and n > m we can construct a deformation retraction of N (x) onto
N, 5”‘1 (x) by sliding outward along radial segments in cells eg, the images under the
characteristic maps ®; of radial segments in D". A deformation retraction of N, (x)
onto N/™(x) is then obtained by performing the deformation retraction of N['(x)
onto N7 (x) during the t-interval [1/2",1/2""'], points of N*(x)—N""!(x) being
stationary outside this t-interval. Finally, N/"(x) is an open ball about x, and so
deformation retracts onto x. O

In particular, CW complexes are locally path-connected. So a CW complex is path-
connected iff it is connected.
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Proposition A.5. For a subcomplex A of a CW complex X, the open neighborhood
N¢(A) deformation retracts onto A if £, <1 for all .

Proof: In each cell of X — A, N,(A) is a product neighborhood of the boundary of
this cell, so a deformation retraction of N,(A) onto A can be constructed just as in
the previous proof. o

Note that for subcomplexes A and B of X, we have N.(A) " N.(B) = N.(AnB).
This implies for example that the van Kampen theorem and Mayer-Vietoris sequences
hold for decompositions X = A U B into subcomplexes A and B as well as into open
sets A and B.

A map f:X—Y with domain a CW complex is continuous iff its restrictions to
the closures e of all cells eli are continuous, and it is useful to know that the same
is true for homotopies f;:X—Y. With this objective in mind, let us introduce a
little terminology. A topological space X is said to be generated by a collection of
subspaces X, if X = U, X, and a set A C X is closed iff A n X, is closed in X, for
each «. Equivalently, we could say ‘open’ instead of ‘closed’ here, but ‘closed’ is more
convenient for our present purposes. As noted earlier, though not in these words,
a CW complex X is generated by the closures ¢y of its cells el;. Since every finite
subcomplex of X is a finite union of closures ey, X is also generated by its finite
subcomplexes. It follows that X is also generated by its compact subspaces, or more
briefly, X is compactly generated.

Proposition A.15 later in the Appendix asserts that if X is a compactly generated
Hausdorff space and Z is locally compact, then X x Z, with the product topology, is
compactly generated. In particular, X x I is compactly generated if X is a CW complex.
Since every compact set in X xI is contained in the product of a compact subspace
of X with I, hence in the product of a finite subcomplex of X with I, such product
subspaces also generate XxI. Since such a product subspace is a finite union of
products ey x I, it is also true that X xI is generated by its subspaces e} xI. This
implies that a homotopy F: X xI—Y is continuous iff its restrictions to the subspaces
e, xI are continuous, which is the statement we were seeking.

Products of CW Complexes

There are some unexpected point-set-topological subtleties that arise with prod-
ucts of CW complexes. As we shall show, the product of two CW complexes does have
anatural CW structure, but its topology is in general finer, with more open sets, than
the product topology. However, the distinctions between the two topologies are rather
small, and indeed nonexistent in most cases of interest, so there is no real problem
for algebraic topology.

Given a space X and a collection of subspaces X, whose union is X, these sub-
spaces generate a possibly finer topology on X by defining a set A C X to be open
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iff An X, is openin X, for all «. The axioms for a topology are easily verified for
this definition. In case {X,} is the collection of compact subsets of X, we write X,
for this new compactly generated topology. It is easy to see that X and X, have the
same compact subsets, and the two induced topologies on these compact subsets co-
incide. If X is compact, or even locally compact, then X = X, thatis, X is compactly
generated.

Theorem A.6. For cw complexes X and Y with characteristic maps &, and Y,
the product maps ®,x¥g are the characteristic maps for a CW complex structure
on (XxY).. If either X or Y is compact or more generally locally compact, then
(XXY), = XXY. Also, (XxY), = XXY if both X and Y have countably many
cells.

Proof: For the first statement it suffices to check that the three conditions in Propo-
sition A.2 are satisfied when we take the space ‘X’ there to be (XXY).. The first two
conditions are obvious. For the third, which says that (XxY), is generated by the
products e} XE;;L, observe that every compact set in XX Y is contained in the prod-
uct of its projections onto X and Y, and these projections are compact and hence
contained in finite subcomplexes of X and Y, so the original compact set is contained
in a finite union of products ey’ x e . Hence the products e,' xej generate (XxY),.

The second assertion of the theorem is a special case of Proposition A.15, hav-
ing nothing to do with CW complexes, which says that a product X xY is compactly
generated if X is compactly generated Hausdorff and Y is locally compact.

For the last statement of the theorem, suppose X and Y each have at most count-
ably many cells. For an open set W C (XxY), and a point (a,b) € W we need to find
a product UxV Cc W with U an open neighborhood of a in X and V an open neigh-
borhood of b in Y. Choose finite subcomplexes X; ¢ X, C --- of X with X = UJ; X;,
and similarly for Y. We may assume a € X; and b € Y,. Since the two topologies
agree on X;xY;, there is a compact product neighborhood K, xL;, ¢ W of (a,b)
in X; xY;. Assuming inductively that K;xL; C W has been constructed in X;xY;,
we would like to construct K;,; xL;,; C W as a compact neighborhood of K;xL; in
Xi1xY;. To do this, we first choose for each x € K; compact neighborhoods K,
of x in X;,; and L, of L; in Y;,; such that K, XL, ¢ W, using the compactness
of L;. By compactness of K;, a finite number of the K, ’s cover K;. Let K;,; be the
union of these K,.’s and let L;,; be the intersection of the corresponding L, ’s. This
defines the desired K; ,xL;,;. Let U; be the interior of K; in X;, so U; c U;,; for
each i. The union U = |J; U; is then open in X since it intersects each X; in a union
of open sets and the X;’s generate X. In the same way the L;’s yield an open set V
in Y. Thus we have a product of open sets UxV C W containing (a, b). m]

We will describe now an example from [Dowker 1952] where the product topology
on XxY differs from the CW topology. Both X and Y will be graphs consisting of
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infinitely many edges emanating from a single vertex, with uncountably many edges
for X and countably many for Y.

Let X = \,I; where I is a copy of the interval [0,1] and the index s ranges
over all infinite sequences s = (s,S,,---) of positive integers. The wedge sum is
formed at the O endpoint of I;. Similarly we let ¥ = \/j I; but with j varying just
over positive integers. Let p,; be the point (1/s;,1/s;) € I;xI; C XXY and let P be
the union of all these points p,;. Thus P consists of a single point in each 2-cell of
XxY,so P is closed in the CW topology on X x Y. We will show it is not closed in the
product topology by showing that (x, »,) lies inits closure, where x is the common
endpoint of the intervals I, and y, is the common endpoint of the intervals I;.

A basic open set containing (x, »,) in the product topology has the form UxV
where U = \;[0,a,) and V = V;[0,b;). It suffices to show that P has nonempty
intersection with Ux V. Choose a sequence t = ({;,t,,-+) with ¢; > j and t; > 1/b;
for all j, and choose an integer k > 1/a,. Then ¢, > k > 1/a, hence 1/t; < a,. We
also have 1/t;, < by. So (1/ty,1/t;) is a point of P that lies in [0,a,) %[0, b;) and
hence in UxV.

Euclidean Neighborhood Retracts

At certain places in this book it is desirable to know that a given compact space
is a retract of a finite simplicial complex, or equivalently (as we shall see) a retract of
a neighborhood in some Euclidean space. For example, this condition occurs in the
Lefschetz fixed point theorem, and it was used in the proof of Alexander duality. So
let us study this situation in more detail.

Theorem A.7. A compact subspace K of R" is a retract of some neighborhood iff K
is locally contractible in the weak sense that for each x € K and each neighborhood
U of x in K there exists a neighborhood V C U of x such that the inclusion V — U
is nullhomotopic.

Note that if K is a retract of some neighborhood, then it is a retract of every
smaller neighborhood, just by restriction of the retraction. So it does not matter if we
require the neighborhoods to be open. Similarly it does not matter if the neighbor-
hoods U and V in the statement of the theorem are required to be open.

Proof: Let us do the harder half first, constructing a retraction of a neighborhood
of K onto K under the local contractibility assumption. The first step is to put a
CW structure on the open set X = R" — K, with the size of the cells approaching
zero near K. Consider the subdivision of R" into unit cubes of dimension n with
vertices at the points with integer coordinates. Call this collection of cubes C,. For
an integer k > 0, we can subdivide the cubes of C, by taking n-dimensional cubes of
edgelength 1/2* with vertices having coordinates of the form i/2* for i € Z. Denote
this collection of cubes by Cj. Let A, C C, be the set of cubes disjoint from K, and
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inductively, let A, C C; be the set of cubes disjoint from K and not contained in cubes
of A; for j < k. The open set X is then the union of all the cubes in the combined
collection A = UJ; A, . Note that the collection A is locally finite: Each point of X has
a neighborhood meeting only finitely many cubes in A, since the point has a positive
distance from the closed set K.

If two cubes of A intersect, their intersection is an i-dimensional face of one
of them for some i < n. Likewise, when two faces of cubes of A intersect, their
intersection is a face of one of them. This implies that the open faces of cubes of A
that are minimal with respect to inclusion among such faces form the cells of a CW
structure on X, since the boundary of such a face is a union of such faces. The vertices
of this CW structure are thus the vertices of all the cubes of A, and the n-cells are
the interiors of the cubes of A.

Next we define inductively a subcomplex Z of this CW structure on X and a map
v:Z—K. The 0-cells of Z are exactly the 0-cells of X, and we let  send each 0-cell
to the closest point of K, or if this is not unique, any one of the closest points of
K. Assume inductively that Z* and »:Z* —K have been defined. For a cell e¥*! of
X with boundary in Z k_if the restriction of # to this boundary extends over ekl
then we include ¥ in Z**! and we let » on e**! be such an extension that is not
too large, say an extension for which the diameter of its image r(e*) is less than
twice the infimum of the diameters for all possible extensions. This defines Z¥*! and
r:Z*¥*!' S K. At the end of the induction we set Z = Z".

It remains to verify that by letting + equal the identity on K we obtain a contin-
uous retraction Z U K— K, and that Z u K contains a neighborhood of K. Given a
point x € K, let U be a ball in the metric space K centered at x. Since K is locally
contractible, we can choose a finite sequence of balls in K centered at x, of the form
u=U,>V,>U,1>V,_ ;D DU,DV,, each ball having radius equal to some
small fraction of the radius of the preceding one, and with V; contractible in U;. Let
B C R™ be a ball centered at x with radius less than half the radius of Vj, and let Y
be the subcomplex of X formed by the cells whose closures are contained in B. Thus
Y U K contains a neighborhood of x in R"™. By the choice of B and the definition
of ¥ on 0-cells we have (Y°) ¢ V,. Since Vj is contractible in Uy,  is defined
on the 1-cells of Y. Also, »(Y') c V, by the definition of » on 1-cells and the fact
that U, is much smaller than V;. Similarly, by induction we have r defined on Y!
with 7(Y%) c V; for all i. In particular, r maps Y to U. Since U could be arbitrarily
small, this shows that extending » by the identity map on K gives a continuous map
v:ZUK—K. And since Y C Z, we see that Z U K contains a neighborhood of K by
the earlier observation that Y U K contains a neighborhood of x. Thus r: Z U K—K
retracts a neighborhood of K onto K.

Now for the converse. Since open sets in R" are locally contractible, it suffices to
show that a retract of a locally contractible space is locally contractible. Let v : X — A
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be a retraction and let U C A be a neighborhood of a given point x € A. If X is
locally contractible, then inside the open set »~'(U) there is a neighborhood V of
x that is contractible in +~'(U), say by a homotopy fi :V—7r"'(U). Then V N A is
contractible in U via the restriction of the composition 7 f;. O

A space X is called a Euclidean neighborhood retract or ENR if for some n there
exists an embedding i:X — R" such that i(X) is a retract of some neighborhood in
R". The preceding theorem implies that the existence of the retraction is independent
of the choice of embedding, at least when X is compact.

Corollary A.8. A compact space is an ENR iff it can be embedded as a retract of a
finite simplicial complex. Hence the homology groups and the fundamental group of
a compact ENR are finitely generated.

Proof: A finite simplicial complex K with n vertices is a subcomplex of a simplex
A" ! and hence embeds in R™. The preceding theorem then implies that K is a
retract of some neighborhood in R", so any retract of K is also a retract of such a
neighborhood, via the composition of the two retractions. Conversely, let K be a com-
pact space that is a retract of some open neighborhood U in R". Since K is compact
it is bounded, lying in some large simplex A" ¢ R™. Subdivide A", say by repeated
barycentric subdivision, so that all simplices of the subdivision have diameter less
than the distance from K to the complement of U. Then the union of all the sim-
plices in this subdivision that intersect K is a finite simplicial complex that retracts
onto K via the restriction of the retraction U —K. O

|| Corollary A.9. Every compact manifold, with or without boundary, is an ENR.

Proof: Manifolds are locally contractible, so it suffices to show that a compact man-
ifold M can be embedded in R* for some k. If M is not closed, it embeds in the
closed manifold obtained from two copies of M by identifying their boundaries. So
it suffices to consider the case that M is closed. By compactness there exist finitely
many closed balls B]' ¢ M whose interiors cover M, where n is the dimension of
M. Let f;:M—S" be the quotient map collapsing the complement of the interior
of Bl' to a point. These f;’s are the components of a map f:M— (S™)™ which is
injective since if x and y are distinct points of M with x in the interior of B}, say,

™, R¥, for example the

then f;(x) # f;(»7). Composing f with an embedding (S™)
product of the standard embeddings S — R""!, we obtain a continuous injection

M — IR", and this is a homeomorphism onto its image since M is compact. O

|| Corollary A.10. Every finite CW complex is an ENR.

Proof: Since CW complexes are locally contractible, it suffices to show that a finite CW
complex can be embedded in some R™. This is proved by induction on the number
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of cells. Suppose the CW complex X is obtained from a subcomplex A by attaching
a cell ¥ via a map f:Sk"1 — A, and suppose that we have an embedding A — R™.
Then we can embed X in R¥xR™ xR as the union of D¥x {0} x {0}, {0} xAx {1},
and all line segments joining points (x,0,0) and (0, f(x),1) for x € sk, m]

Spaces Dominated by CW Complexes

We have been considering spaces which are retracts of finite simplicial complexes,
and now we show that such spaces have the homotopy type of CW complexes. In fact,
we can just as easily prove something a little more general than this. A space Y is
said to be dominated by a space X if there are maps Y Xy with i ~ 1.
This makes the notion of a retract into something that depends only on the homotopy
types of the spaces involved.

Proposition A.11. A space dominated by a CW complex is homotopy equivalent to a
CW complex.

Proof: Recall from §3.F that the mapping telescope T(f}, f5,--+) of a sequence of
maps X; i»XZ L, X3 — - - is the quotient space of [1;(X;x[i,i+1]) obtained
by identifying (x,i+ 1) € X;x[i,i+ 1] with (f(x),i+1) € X;,;x[i+1,i+2]. We

shall need the following elementary facts:

1) T(fy, for-+") =T(gy,95,--+) if f; = g; for each i.
(2) T(f]_!va"') =T(fz.f3,"')-
(3) T(flyfzy"') :T(fzflvfz;fs,"')-

The second of these is obvious. To prove the other two we will use Proposition 0.18,
whose proof applies not just to CW pairs but to any pair (X;,A) for which there
is a deformation retraction of X;xI onto X;x {0} U AXI. To prove (1) we regard
T(f1,fo,+++) as being obtained from [[;(X;x {i}) by attaching [[;(X;x[i,i + 1]).
Then we can obtain T(g,,g,,--) by varying the attaching map by homotopy. To
prove (3) we view T(f}, f>,--+) as obtained from the disjoint union of the mapping
cylinders M(f,;) by attaching [[;(X,;_; x[2i — 1,2i]). By sliding the attachment of
Xx[2i-1,2i] to X,; C M(f,;) down the latter mapping cylinder to X,;,; we convert
M(fy;_1) UM(f5;) into M(fy;f>i_1) UM(f;). This last space deformation retracts
onto M(f,;f>;_;). Doing this for all i gives the homotopy equivalence in (3).

Now to prove the proposition, suppose that the space Y is dominated by the CW
complex X viamaps Y S xLy with »i ~ 1. By (2) and (3) we have T (ir,ir,---) ~
T(r,i,v,i,--+) =~ T(,r,i,v, ) ~ T(ri,ri,---). Since vi ~ 1, T(vi,vi,---) is ho-
motopy equivalent to the telescope of the identity maps Y —-Y—Y — ..., which
is YX[0,0) =~ Y. On the other hand, the map ir is homotopic to a cellular map
f:X—X,so T(ir,iv,---) = T(f,f,---), which is a CW complex. ]
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One might ask whether a space dominated by a finite CW complex is homotopy
equivalent to a finite CW complex. In the simply-connected case this follows from
Proposition 4C.1 since such a space has finitely generated homology groups. But
there are counterexamples in the general case; see [Wall 1965].

In view of Corollary A.10 the preceding proposition implies:

|| Corollary A.12. A compact manifold is homotopy equivalent to a CW complex. 0O

One could ask more refined questions. For example, do all compact manifolds
have CW complex structures, or even simplicial complex structures? Answers here
are considerably harder to come by. Restricting attention to closed manifolds for
simplicity, the present status of these questions is the following. For manifolds of
dimensions less than 4, simplicial complex structures always exist. In dimension 4
there are closed manifolds that do not have simplicial complex structures, while the
existence of CW structures is an open question. In dimensions greater than 4, CW
structures always exist, but whether simplicial structures always exist is unknown,
though it is known that there are n-manifolds not having simplicial structures locally
isomorphic to any linear simplicial subdivision of R", for all n > 4. For more on
these questions, see [Kirby & Siebenmann 1977] and [Freedman & Quinn 1990].

Exercises

1. Show that a covering space of a CW complex is also a CW complex, with cells
projecting homeomorphically onto cells.

2. Let X be a CW complex and x, any point of X. Construct a new CW complex
structure on X having x,, as a 0-cell, and having each of the original cells a union of
the new cells. The latter condition is expressed by saying the new CW structure is a
subdivision of the old one.

3. Show that a CW complex is path-connected iff its 1-skeleton is path-connected.
4. Show that a CW complex is locally compact iff each point has a neighborhood that
meets only finitely many cells.

5. For a space X, show that the identity map X, — X induces an isomorphism on 1,
where X, denotes X with the compactly generated topology.

The Compact-Open Topology

By definition, the compact-open topology on the space X Y of maps f:Y—X has
a subbasis consisting of the sets M(K,U) of mappings taking a compact set K C Y
to an open set U C X. Thus a basis for XY consists of sets of maps taking a finite
number of compact sets K; C Y to open sets U; C X. If Y is compact, which is the
only case we consider in this book, convergence to f € X means, loosely speaking,



