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For example, taking B to be a point, the long exact sequence of the triple (X, A,B)
becomes the long exact sequence of reduced homology for the pair (X, A).

Excision

A fundamental property of relative homology groups is given by the following
Excision Theorem, describing when the relative groups H, (X, A) are unaffected by
deleting, or excising, a subset Z C A.

Theorem 2.20. Given subspaces Z C A C X such that the closure of Z is contained
in the interior of A, then the inclusion (X — Z,A — Z) — (X, A) induces isomor-
phisms H, (X -Z,A-Z)—H,(X,A) for all n. Equivalently, for subspaces A,B C X
whose interiors cover X, the inclusion (B,A N B) — (X, A) induces isomorphisms
H,(B,AnB)—H,(X,A) forall n.

The translation between the two versions is obtained by
setting B=X—-Z and Z = X—B. Then AnB = A—Z and the
condition cl Z C int A is equivalent to X = int A U int B since x
X-intB=clZ.

The proof of the excision theorem will involve a rather lengthy technical detour
involving a construction known as barycentric subdivision, which allows homology
groups to be computed using small singular simplices. In a metric space ‘smallness’
can be defined in terms of diameters, but for general spaces it will be defined in terms
of covers.

For a space X, let U = {U;} be a collection of subspaces of X whose interiors
form an open cover of X, and let CY(X) be the subgroup of C, (X) consisting of
chains }; n;0; such that each o; has image contained in some set in the cover U. The
boundary map 3:C,,(X)—C,_, (X) takes CX(X) to C'_,(X), so the groups C%(X)
form a chain complex. We denote the homology groups of this chain complex by
HY(X).

Proposition 2.21. The inclusion L:C}QL(X) — C,(X) is a chain homotopy equiva-
lence, that is, there is a chain map p : C,(X) —>C},L(X) such that tp and pt are chain
homotopic to the identity. Hence t induces isomorphisms H%(X) ~ H,(X) forall n.

Proof: The barycentric subdivision process will be performed at four levels, beginning
with the most geometric and becoming increasingly algebraic.

(1) Barycentric Subdivision of Simplices. The points of a simplex [v,, - --, v, ] are the
linear combinations >; {;v; with >;t; =1 and ¢; = O for each i. The barycenter or
‘center of gravity’ of the simplex [v,, - -+, v, ] is the point b = 3 ; t;v; whose barycen-
tric coordinates ¢; are all equal, namely t; = 1/(n + 1) for each i. The barycentric
subdivision of [v,, - -, v, ] is the decomposition of [v, - - -, v, ]| into the n-simplices
[b,wy,---,w,_;] where, inductively, [wg,---,w,_;] is an (n — 1)-simplex in the
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barycentric subdivision of a face [v,--,¥;, -+, v, ]. The induction starts with the
case n = 0 when the barycentric subdivision of [v,] is defined to be just [v,] itself.

The next two cases n = 1,2 and b

part of the case n = 3 are shown Y vy
v
2

in the figure. It follows from the
inductive definition that the ver-
v

tices of simplices in the barycen- " \ 3
tric subdivision of [vg,---,v,] | “

0 1

are exactly the barycenters of all
the k-dimensional faces [v ,vik] of [vg,--+,v,] for 0 < k <m. When k = 0 this
gives the original vertices v; since the barycenter of a 0-simplex is itself. The barycen-
ter of [v,,---,v; ] has barycentric coordinates t; = 1/(k + 1) for i = i, ---,i; and

t; = 0 otherwise.

IREE

The n-simplices of the barycentric subdivision of A™, together with all their faces,
do in fact form a A-complex structure on A", indeed a simplicial complex structure,
though we shall not need to know this in what follows.

A fact we will need is that the diameter of each simplex of the barycentric subdivi-
sion of [vg,---,v,] isatmost n/(n+1) times the diameter of [v,, ---,v,]. Here the
diameter of a simplex is by definition the maximum distance between any two of its
points, and we are using the metric from the ambient Euclidean space R™ containing
[vg, -+, v, ). The diameter of a simplex equals the maximum distance between any
of its vertices because the distance between two points v and >; t;v; of [vy,---,v,]
satisfies the inequality

[v =3t = |2it;(v —v) | = Xitilv —v;| < 3;t;max |v — v;| = max |v — v,

To obtain the bound n/(n + 1) on the ratio of diameters, we therefore need to verify
that the distance between any two vertices w; and w; of a simplex [wy, ---,w,] of
the barycentric subdivision of [v, - -+, v,,] isatmost n/(n+1) times the diameter of
[vg, -+, V,]. If neither w; nor w; is the barycenter b of [v,---,v,], then these two
points lie in a proper face of [vy,---, v, ] and we are done by induction on n. So we
may suppose w;, say, is the barycenter b, and then by the previous displayed inequal-
ity we may take w; to be a vertex v;. Let b; be the barycenter of [vy, -+, D, -+, V],
with all barycentric coordinates equal to 1/n except

_ - 1 n_
for t; = 0. Then we have b = -7 v; + 7 7b;. The b,
sum of the two coefficients is 1, so b lies on the line v

1
segment [v;, b;] from v; to b;, and the distance from

b to v; is n/(n + 1) times the length of [v;, b;]. Hence the distance from b to v; is
bounded by n/(n + 1) times the diameter of [vg,--,v,].

The significance of the factor n/(n+1) is that by repeated barycentric subdivision
we can produce simplices of arbitrarily small diameter since (n/(n+1))" approaches
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0 as v goes to infinity. It is important that the bound n/(n + 1) does not depend on
the shape of the simplex since repeated barycentric subdivision produces simplices
of many different shapes.

(2) Barycentric Subdivision of Linear Chains. The main part of the proof will be to
construct a subdivision operator S: C,,(X)— C, (X) and show this is chain homotopic
to the identity map. First we will construct S and the chain homotopy in a more
restricted linear setting.

For a convex set Y in some Euclidean space, the linear maps A" —Y generate
a subgroup of C,(Y) that we denote LC, (Y), the linear chains. The boundary map
0:C,(Y)—C,_,(Y) takes LC, (Y) to LC,,_;(Y), so the linear chains form a subcom-
plex of the singular chain complex of Y. We can uniquely designate a linear map
A:A"—Y by [wy, -, w,] where w; is the image under A of the i'* vertex of A".
To avoid having to make exceptions for 0-simplices it will be convenient to augment
the complex LC(Y) by setting LC_,(Y) = Z generated by the empty simplex [J],
with o[w,] = [@] for all 0-simplices [w].

Each point b € Y determines a homomorphism b:LC,(Y)—LC,,,(Y) defined
on basis elements by b([wg,---,w,]) = [b,wg, -, w,]. Geometrically, the homo-
morphism b can be regarded as a cone operator, sending a linear chain to the cone
having the linear chain as the base of the cone and the point b as the tip of the
cone. Applying the usual formula for 0, we obtain the relation ob([w, -+, w,]) =
[wg, -+, w,]—b@wy, -, w,]). By linearity it follows that 0b(x) = @ — b(0«x) for
all @ € LC,(Y). This expresses algebraically the geometric fact that the boundary of
a cone consists of its base together with the cone on the boundary of its base. The
relation 0b(x) = x—b(0x) can be rewritten as 0b+b0o = 1, so b is a chain homotopy
between the identity map and the zero map on the augmented chain complex LC(Y).

Now we define a subdivision homomorphism S:LC,(Y)—LC,(Y) by induction
on n. Let A:A"—Y be a generator of LC,(Y) and let b, be the image of the
barycenter of A™ under A. Then the inductive formula for S is S(A) = b,(S9A)
where b, :LC,,_,(Y)—LC,(Y) is the cone operator defined in the preceding para-
graph. The induction starts with S([@]) = [D], so S is the identity on LC_,(Y).
It is also the identity on LCy(Y), since when n = 0 the formula for S becomes
S(Two]) = wy(So[wy]) = wo(SUD]) = we([D]) = [wy]. When A is an embed-
ding, with image a genuine n-simplex [w, -, w,], then S(A) is the sum of the
n-simplices in the barycentric subdivision of [wy, -, w,], with certain signs that
could be computed explicitly. This is apparent by comparing the inductive definition
of S with the inductive definition of the barycentric subdivision of a simplex.

Let us check that the maps S satisfy 0S = §0, and hence give a chain map from
the chain complex LC(Y) toitself. Since $ = 1 on LCy(Y) and LC_,(Y), we certainly
have S = S0 on LC,(Y). The result for larger n is given by the following calculation,
in which we omit some parentheses to unclutter the formulas:
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0SA = 0(b,(SoA))
= S0A — b, (0S0A) since ob, + b0 = 1
= S0A — b, (S00A) by induction on n
=S0A since 00 = 0

We next build a chain homotopy T:LC,(Y)—LC,,.,(Y) between S and the iden-
tity, fitting into a diagram

- —— LC,(Y) LC,(Y) LCy(Y) ——LC ,(Y)—— 0

ls / ls / sln %sln

S LC,(Y) LC,(Y) LC,(Y) LC,(Y)——0

We define T on LC, (Y) inductively by setting T = 0 for n = -1 and letting TA =
by(A —ToA) for n = 0. The geometric motivation for this formula is an inductively
defined subdivision of A" xI obtained by
joining all simplices in A" x {0} U dA"xI
to the barycenter of A™x {1}, as indicated
in the figure in the case n = 2. What T
actually does is take the image of this sub-
division under the projection A" x[—A".
The chain homotopy formula 0T + T0 = 1 — S is trivial on LC_; (Y) where T =0
and S = 1. Verifying the formula on LC, (Y) with n > 0 is done by the calculation
O0TA = 3(by(A—ToA))

=A-TOA-Db,(0(A—T0oA))  since dby =1 —b,d

=A—-T0A - b,(S0A +TooA) by induction on n

=A-T0A-SA since 00 = 0 and SA = b, (S0A)

Now we are done with inductive arguments and we can discard the group LC_; (Y)

which was used only as a convenience. The relation 0T+ T0 = 1 —S still holds without
LC_,(Y) since T was zero on LC_;(Y).

(3) Barycentric Subdivision of General Chains. Define S:C, (X)— C,(X) by setting
So = 0,SA" for a singular n-simplex o:A"—X. Since SA" is the sum of the
n-simplices in the barycentric subdivision of A", with certain signs, So is the corre-
sponding signed sum of the restrictions of o to the n-simplices of the barycentric
subdivision of A™. The operator S is a chain map since
0S0 = 00,SA"™ = 0,0SA™ = 0,S0A"

= 0,S(Z;(-=1)'A")  where Al is the i face of A"

=3, (-1)io,SAY

= Xi(=D'S(a|a})

=S(Xi(-Diola}) = S@0)
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In similar fashion we define T:C,(X)—C,,,(X) by To = 0,TA", and this gives a
chain homotopy between S and the identity, since the formula 0T + To = 1 — S holds
by the calculation

9To = 90, TA" = 0,0TA" = 0, (A" — SA" —TOA") =0 - So — 0, TOA"
=0-So-T(00)
where the last equality follows just as in the previous displayed calculation, with S
replaced by T.
(4) Iterated Barycentric Subdivision. A chain homotopy between 1 and the iterate §™

is given by the operator D,, = S ;. TS® since

oD, +D,0= > (9TS'+71S%9) = > (3TS'+T0S") =

O<i<m O<i<m
S @T+Tas'= > (1-5)s'= > (s'-s"H=1-5"
O<i<m O<i<m O<i<m

For each singular n-simplex o :A" — X there exists an m such that S" (o) lies in
C}f(X ) since the diameter of the simplices of S™(A™) will be less than a Lebesgue
number of the cover of A" by the open sets o ~! (int U;) if m is large enough. (Recall
that a Lebesgue number for an open cover of a compact metric space is a number
& > 0 such that every set of diameter less than ¢ lies in some set of the cover; such a
number exists by an elementary compactness argument.) We cannot expect the same
number m to work for all o’s, so let us define m (o) to be the smallest m such that
S™o isin CH(X).

Suppose we define D:C,,(X)—C,,;(X) by Do = D,,,,0. To see whether D is
a chain homotopy, we manipulate the chain homotopy equation

D)0 + D00 =0 = S™ 7o

into an equation whose left side is 0Do + Ddo by moving the second term on the left
side to the other side of the equation and adding Ddo to both sides:

dDo + D30 =0 — [S™ 70 + D,y () (30) = D(30)]

If we define p(o) to be the expression in brackets in this last equation, then this
equation has the form

() oDo +Doo =0 - p(0)

We claim that p(0) € C}f(X). This is obvious for the term S™°) o . For the remaining
part D, (00) —D(00), note first that if o; denotes the restriction of o to the j*
face of A", then m(0;) < m(0), so every term TS'(0;) in D(30) will be a term in
Diyy(6y(@0). Thus Dy, ) (90) — D(d0) is a sum of terms TS'(g;) with i = m(0;),
and these terms lie in C}L[(X) since T takes Cyll[_l(X) to C%(X)

We can thus regard the equation (x) as defining p:C, (X) —>C}f(X). For varying
n these p’s form a chain map since (x) implies dp(o) = 00 — 0D (o) = p(d0).
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The equation () says that 0D + D3 = 1 — tp for t:CH(X) — C,,(X) the inclusion.
Furthermore, pt = 1 since D is identically zero on C},F(X), as m(o) = 0 if o isin
C}f (X), hence the summation defining Do is empty. Thus we have shown that p is a
chain homotopy inverse for . m]

Proof of the Excision Theorem: We prove the second version, involving a decom-
position X = A U B. For the cover U = {A, B} we introduce the suggestive notation
C, (A + B) for C%(X), the sums of chains in A and chains in B. At the end of the
preceding proof we had formulas éD + D0 = 1 — (p and pt = 1. All the maps ap-
pearing in these formulas take chains in A to chains in A, so they induce quotient
maps when we factor out chains in A. These quotient maps automatically satisfy the
same two formulas, so the inclusion C, (A + B)/C,,(A) — C,(X)/C, (A) induces an
isomorphism on homology. The map C,(B)/C,(AnB)—C, (A + B)/C, (A) induced
by inclusion is obviously an isomorphism since both quotient groups are free with
basis the singular n-simplices in B that do not lie in A. Hence we obtain the desired
isomorphism H,(B,An B) ~ H,(X,A) induced by inclusion. O

All that remains in the proof of Theorem 2.13 is to replace relative homology
groups with absolute homology groups. This is achieved by the following result.

Proposition 2.22. For good pairs (X, A), the quotient map q:(X,A)— (X/A,A/A)
induces isomorphisms q,. :H, (X,A)—H,(X/A,AlA) = ﬁn(X/A) for all n.

Proof: Let V be a neighborhood of A in X that deformation retracts onto A. We
have a commutative diagram

H,(X,A) H,(X,V) H,(X-A V-A)

lq* lq* lﬂi*

H,(X/A,A/A) — H,(X/A,V/A) «—— H,(X/A-A/AV/A-A/A)

The upper left horizontal map is an isomorphism since in the long exact sequence of
the triple (X,V,A) the groups H,(V,A) are zero for all n, because a deformation
retraction of V onto A gives a homotopy equivalence of pairs (V,A) ~ (A, A), and
H, (A, A) = 0. The deformation retraction of V onto A induces a deformation retrac-
tion of V/A onto A/A, so the same argument shows that the lower left horizontal
map is an isomorphism as well. The other two horizontal maps are isomorphisms
directly from excision. The right-hand vertical map g, is an isomorphism since g
restricts to a homeomorphism on the complement of A. From the commutativity of
the diagram it follows that the left-hand g, is an isomorphism. o

This proposition shows that relative homology can be expressed as reduced abso-
lute homology in the case of good pairs (X, A), but in fact there is a way of doing this
for arbitrary pairs. Consider the space X UCA where CA is the cone (AXI)/(AXx {0})



